Quan Hệ Điều Tiết Moderation, Các Loại Biến Điều Tiết Moderator, Mô Hình Hóa Quan Hệ Điều Tiết

Quan hệ điều tiết Moderation mô tả một tình huống trong đó mối quan hệ giữa hai biến số không phải là hằng số mà phụ thuộc vào các giá trị của một biến thứ ba, biến thứ 3 này được gọi là biến điều tiết . Biến điều tiết thay đổi cường độ hoặc thậm chí là hướng của mối quan hệ giữa hai biến trong mô hình.

Như ảnh bên dưới, M là biến moderator, Y1 là biến độc lập, Y2 là biến phụ thuộc. Biến M có thể thay đổi mối quan hệ giữa Y1 đến Y2 trong mô hình.

Nghiên cứu trước đây đã chỉ ra rằng mối quan hệ giữa sự hài lòng của khách hàng và lòng trung thành của khách hàng có sự khác biệt phụ thuộc vào thu nhập của khách hàng. Chính xác hơn, thu nhập có tác động tiêu cực rõ rệt lên mối quan hệ hài lòng - lòng trung thành. Thu nhập càng cao, mối quan hệ giữa sự hài lòng và lòng trung thành càng yếu. Nói cách khác, thu nhập đóng vai trò biến điều tiết, giải thích cho tính không đồng nhất trong mối liên kết giữa hài lòng-lòng trung thành. Do đó, mối quan hệ này không giống nhau cho tất cả khách hàng mà thay vào đó khác nhau tùy thuộc vào thu nhập của họ. Như vậy, phân tích điều tiết được xem như là một phương tiện để giải thích tính không đồng nhất trong dữ liệu.

Có hai loại biến điều tiết, đó là biến điều tiết dạng phân loại và biến điều tiết liên tục.

  • Biến điều tiết dạng phân loại khi mà biến đó dạng định danh, ví dụ Nam/Nữ. Khi biến điều tiết dạng phân loại, lúc đó bộ dữ liệu được chia ra theo các nhóm của biến điều tiết là các bộ dữ liệu nhỏ hơn. Lúc đó kĩ thuật phân tích đa nhóm multigroup được áp dụng.
  • Biến điều tiết liên tục khi đó là biến dạng định lượng liên tục,ví dụ thu nhập, độ tuổi( lưu ý không phải là các NHÓM thu nhập, NHÓM tuổi). Khi biến điều tiết dạng liên tục, cũng có một kĩ thuật multigroup, đó là sẽ chia biến này thành các nhóm, dựa trên trung bình hoặc trung vị( mean and median splits). Lúc đó biến được chia này mặc nhiên trở thành biến điều tiết phân loại, và ta áp dụng phân tích đa nhóm multigroup để phân tích biến điều tiết

Về biến điều tiết phân loại categorical, một ví dụ là biến giới tính, có hai loại Nam/Nữ ( được mã hóa 0/1). Cũng có thể có biến điều tiết 3-4 loại, ví dụ các mức độ tuổi: <30 tuổi, 30-40 tuổi, trên 40 tuổi ( được mã hóa 0/1/2). Trong hầu hết các trường hợp, các nhà nghiên cứu sử dụng biến điều tiết phân loại để chia bộ dữ liệu thành hai hoặc nhiều nhóm và ước tính riêng từng mô hình cho từng nhóm dữ liệu. Cách tiếp cận này cung cấp một kết quả hoàn chỉn h hơn về ảnh hưởng của biến điều tiết đối với kết quả phân tích.

Trong nhiều trường hợp, các nhà nghiên cứu có biến điều tiết liên tục mà họ tin có thể ảnh hưởng đến sức mạnh của một mối quan hệ cụ thể giữa hai biến tiềm ẩn. Ví dụ, giả thuyết rằng mối quan hệ giữa sự hài lòng và lòng trung thành bị ảnh hưởng bởi thu nhập của khách hàng. Chính xác hơn, có thể đưa ra giả thuyết rằng mối quan hệ giữa sự hài lòng của khách hàng và lòng trung thành của khách hàng yếu hơn đối với các khách hàng có thu nhập cao và mạnh mẽ hơn cho các khách hàng có thu nhập thấp. Hiệu ứng của biến điều tiết như vậy sẽ chỉ ra rằng mối quan hệ lòng trung thành hài lòng thay đổi, tùy thuộc vào mức thu nhập. Nếu hiệu ứng điều tiết này không có mặt, chúng ta sẽ giả định rằng sức mạnh của mối quan hệ giữa sự hài lòng và lòng trung thành là không đổi theo thu nhập.

Để hiểu được cách các hiệu ứng điều tiết được mô hình hoá, hãy xem xét mô hình đường dẫn như sau:

Thu nhập đóng vai trò là biến điều tiết (M), ảnh hưởng đến mối quan hệ giữa sự hài lòng của khách hàng (Y1) và lòng trung thành của khách hàng (Y2). Hiệu ứng điều tiết (p3) được biểu thị bằng một mũi tên chỉ vào hiệu ứng p1 liên kết Y1 và Y2. Hơn nữa, khi bao gồm hiệu ứng điều tiết trong mô hình, cũng có mối quan hệ trực tiếp (p2) từ biến điều tiết đến biến phụ thuộc nội sinh. Mối quan hệ p2 này rất quan trọng (và là thường xuyên bị bỏ sót) vì nó kiểm soát tác &# 273;ộng trực tiếp của biến điều tiết lên biến phụ thuộc nội sinh. Nếu đường dẫn p2 bị bỏ qua, hiệu ứng của M trên mối quan hệ giữa Y1 và Y2 (tức là p3) sẽ bị thổi phồng.

Mô hình này diễn giải như sau: Y2   =   ( p1   +   p3*Μ )* Y 1   +   p2*M

Như vậy ảnh hưởng của Y1 lên Y2 không chỉ phụ thuộc vào cường độ của tác động đơn p1 mà còn trên tích số của p3 và M. Để hiểu cách biến điều tiết được tích hợp trong mô hình, chúng ta cần viết lại phương trình như sau:

Cho thấy mô hình có biến điều tiết cần mô tả ra ảnh hưởng của biến độc lập ngoại sinh (tức là, p1*Y1), ảnh hưởng của biến điều tiết ( p2*M), và tích của p3*(Y1*M), còn được gọi là cụm tương tác . Kết quả là, hệ số p3 biểu thị hiệu ứng p1 thay đổi như thế nào khi biến điều tiết M tăng hoặc giảm theo một đơn vị độ lệch chuẩn .

Như có thể thấy, mô hình bao gồm cụm tương tác interaction term như một biến tiềm ẩn bổ sung bao gồm tích của biến tiềm ẩn ngoại sinh Y1 và biến điều tiết M. Do cụm tương tác interaction term này, các nhà nghiên cứu thường tham khảo các hiệu ứng tương tác interaction effects khi mô hình hóa biến điều tiết moderator .

Khi diễn giải kết quả phân tích điều tiết, mối quan tâm chính là mức ý nghĩa significance của cụm tương tác interaction term. Nếu mối quan hệ của interaction term lên biến phụ thuộc nội sinh có ý nghĩa thống kê, kết luận rằng biến M có tác động điều tiết có ý nghĩa thống kê đối với mối quan hệ giữa Y1 vàY2. SmartPLS sẽ dùng bootstrapping để đánh giá quan hệ điều tiết này. Trong trường hợp tác động điều tiết có ý nghĩa thống kê, bước tiếp theo là xác định sức mạnh của hi&# 7879;u ứng điều tiết

Như vậy, biến điều tiết tương tự như biến trung gian ở chỗ biến số thứ ba (tức là, biến trung gian hoặc biến điều tiết) ảnh hưởng đến sức mạnh của mối quan hệ giữa hai biến tiềm ẩn. Sự khác biệt giữa hai khái niệm là biến điều tiết không phụ thuộc vào biến độc lập ngoại sinh. Ngược lại, với biến trung gian, có hiệu ứng trực tiếp từ biến độc lập ngoại sinh đến biến trung gian.

Tóm lại, nhóm Thạc Sỹ QTKD Bách Khoa đã giới thiệu về Quan hệ điều tiết moderation, các loại biến điều tiết moderator, mô hình hóa quan hệ điều tiết . Khi xử lý bên phần mềm AMOS thì áp dụng kĩ thuật phân tích đa nhóm multigroup để xử lý. Còn phần mềm SmartPLS thì áp dụng chức năng MGA Multi-Group Analysis để thực hiện.

Next Post Previous Post